Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 587
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1392414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605985

RESUMO

Succinic acid (SA), one of the 12 top platform chemicals produced from biomass, is a precursor of various high value-added derivatives. Specially, 1 mol CO2 is assimilated in 1 mol SA biosynthetic route under anaerobic conditions, which helps to achieve carbon reduction goals. In this review, methods for enhanced CO2 fixation in SA production and utilization of waste biomass for SA production are reviewed. Bioelectrochemical and bioreactor coupling systems constructed with off-gas reutilization to capture CO2 more efficiently were highlighted. In addition, the techno-economic analysis and carbon sequestration benefits for the synthesis of bio-based SA from CO2 and waste biomass are analyzed. Finally, a droplet microfluidics-based high-throughput screening technique applied to the future bioproduction of SA is proposed as a promising approach.

2.
Heart Lung ; 66: 78-85, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593677

RESUMO

BACKGROUND: Early cardiac rehabilitation plays a crucial role in the recovery of patients with ST-segment elevation acute myocardial infarction (STEMI) following percutaneous coronary intervention (PCI). This study sought to determine the effect of a program of sitting Baduanjin exercises on early cardiac rehabilitation. OBJECTIVE: The goal of this study was to investigate the effects of sitting Baduanjin exercises on cardiovascular and psychosocial functions in patients with STEMI following PCI. METHODS: This quasi-experimental study employed a randomized, non-equivalent group design. Patients in the intervention group received daily sitting Baduanjin training in addition to a series of seven-step rehabilitation exercises, whereas those in the control group received only the seven-step rehabilitation training, twice daily. Differences in heart rate variability (HRV) indicators, exercise capacity (Six-Minute Walking Distance; 6-MWD), anxiety (Generalized Anxiety Disorder-7; GAD-7), and depression (Patient Health Questionnaire-9; PHQ-9) between the two study groups during hospitalization were analyzed. RESULTS: Patients in the intervention group exhibited lower rates of abnormalities in the time domain and frequency domain parameters of HRV. The median scores of GAD-7 and PHQ-9 in both groups were lower than those at the time of admission, with the intervention group exhibiting lower scores than the control group (P < 0.001; P < 0.001, respectively). The 6-MWD after the intervention was greater in the intervention group compared to the control group (P = 0.014). CONCLUSIONS: We found that sitting Baduanjin training has the potential to enhance HRV, cardiac function, and psychological well-being in patients with STEMI after PCI. This intervention can potentially improve the exercise capacity of a patient before discharge.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38594564

RESUMO

Complex wastewater matrices such as printed circuit board (PCB) manufacturing wastewater present a major environmental concern. In this work, simultaneous decomplexation of metal complex Cu-EDTA and reduction/electrodeposition of Cu2+ was conducted in a persulfate-based electrochemical oxidation system. Oxidizing/reductive species were simultaneously produced in this system, which realized 99.8% of Cu-EDTA decomplexation, 94.5% of Cu2+ reduction/electrodeposition under the conditions of original solution pH = 3.2, electrode distance = 3 cm, [Na2S2O8]0 = 5 mM, current density = 12 mA/cm2, and reaction time = 180 min. The total treatment cost is as low as 0.80 USD/mol Cu-EDTA. Effective mineralization (74.1% total organic carbon removal) of the solution was obtained after 3 h of treatment. •OH and SO4•- drove the Cu-EDTA decomplexation, destroying the chelating sites and finally it was effectively mineralized to CO2, H2O and Cu2+. The mechanisms of copper electrodeposition on the stainless steel cathode and persulfate activation by the BDD anode were proposed based on the electrochemical measurements. The electrodes exhibited excellent reusability and low metal (total iron and Ni2+) leaching during 20 cycles of application. This study provide an effective and sustainable method for the application of the electro-persulfate process in treating complex wastewater matrices.

4.
Heliyon ; 10(8): e29428, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38638966

RESUMO

Activated astrocytes are a primary source of inflammatory factors following traumatic optic neuropathy (TON). Accumulation of inflammatory factors in this context leads to increased axonal damage and loss of retinal ganglion cells (RGCs). Therefore, in the present study, we explored the role of the astrocyte G protein-coupled estrogen receptor (GPER) in regulating inflammatory factors following optic nerve crush (ONC), and analyzed its potential regulatory mechanisms. Overall, our results showed that GPER was abundantly expressed in the optic nerve, and co-localized with glial fibrillary acidic proteins (GFAP). Exogenous administration of G-1 led to a significant reduction in astrocyte activation and expression of inflammation-related factors (including IL-1ß, TNF-α, NFκB, and p-NFκB). Additionally, it dramatically increased the survival of RGCs. In contrast, astrocytes were activated to a greater extent by exogenous G15 administration; however, RGCs survival was significantly reduced. In vitro, GPER activation significantly reduced astrocyte activation and the release of inflammation-related factors. In conclusion, activation of astrocyte GPER significantly reduced ONC inflammation levels, and should be explored as a potential target pathway for protecting the optic nerve and RGCs after TON.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124302, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38640623

RESUMO

Lead pollution has remained a significant global concern for several decades due to its detrimental effects on the brain, heart, kidneys, lungs, and immune system across all age groups. Addressing the demand for detecting trace amounts of lead in food samples, we have developed a novel biosensor based on fluorescence resonance energy transfer (FRET) from fluorescein R6G to gold nanoclusters (AuNCs-CCY). By utilizing polypeptides as a template, we successfully synthesized AuNCs-CCY with an excitation spectrum that overlaps with the emission spectrum of R6G. Exploiting the fact that Pb2+ induces the aggregation of gold nanoclusters, leading to the separation of R6G from AuNCs-CCY and subsequent fluorescence recovery, we achieved the quantitative detection of Pb2+. Within the concentration range of 0.002-0.20 µM, a linear relationship was observed between the fluorescence enhancement value (F-F0) and Pb2+ concentration, characterized by the linear equation y = 2398.69x + 87.87 (R2 = 0.996). The limit of detection (LOD) for Pb2+ was determined to be 0.00079 µM (3σ/K). The recovery rate ranged from 96 % to 104 %, with a relative standard deviation (RSD) below 10 %. These findings demonstrate the potential application value of our biosensor, which offers a promising approach to address the urgent need for sensitive detection of heavy metal ions, specifically Pb2+, in food samples.

6.
Heliyon ; 10(7): e28439, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601561

RESUMO

Primary glioblastoma(pGBM) is the most malignant tumor of the central nervous system. Radiotherapy, chemotherapy and surgical treatment have little effect on the survival of pGBM patients. The prognosis is often poorly once the tumor recurs. It is urgent to develop new therapies for patients. In recent years, studies have been clarified that miRNA have a powerful regulating effect on the genes. However, the main group of miRNAs in regulating long-term survival specific related genes of pGBM is still unclear. Given that the survival period of most glioma patients is relatively short, studying long-term survival patients with pGBM is of great value for this disease. Our study aim to identify key miRNAs with long-term survival related genes present in pGBM and uncover their potential mechanisms. The gene expression profiles of GSE53733, GSE15824, GSE30563, GSE50161 were obtained from the Gene Expression Omnibus database. Firstly, samples were divided into 3 groups according to its survival time and each group compare to the normal control group. Then we obtained differential expression genes (DEGs) with a long-term survival specific (LTSDEGs) and a short-term survival specific DEGs (STSDEGs). Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted with LTSDEGs and STSDEGs together. Moreover, we used the UALCAN database to verify LTSDEGs and STSDEGs, and obtained long-term verified survival specific DEGs(LTVSDEGs) and short-term verified survival specific DEGs(STVSDEGs). Finally, we established the predicted key miRNAs-LTVSDEGs interaction network. The protein expressions of the top 4 LTVSDEGs were verified in the HPA database with immunohistochemical staining. In total, we found 260 genes changed in LTSDEGs and 822 genes changed in STSDEGs. GO and KEGG results shown that the major changes are focused on tumor metabolism. 9 LTVSDEGs and 18 STVSDEGs were verified in UALCAN database. As for protein expression verification in top 4 LTVSDEGs, ZNF630, BLVRB and RPA3 were verified, while TPBG was not detected. We obtained 59 key miRNA from the predicted key miRNAs-LTVSDEGs interaction network. 25 key miRNAs were verified using GSE90603. Finally, we constructed the key miRNAs-LTVSDEGs network using a Sankey diagram, including 25 miRNAs and 7 LTVSDEGs. In conclusion, our study shows that there is a close relationship between metabolic changes and survival in pGBM. Besides, we established a key miRNAs-LTVSDEGs network for pGBM, which could be the key path in prolonging the life of pGBM patients.

7.
Front Genet ; 15: 1292757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645487

RESUMO

Background: About 10% of individuals undergoing in vitro fertilization encounter recurrent implantation failure (RIF), which represents a worldwide social and economic concern. Nevertheless, the critical genes and genetic mechanisms underlying RIF are largely unknown. Methods: We first obtained three comprehensive microarray datasets "GSE58144, GSE103465 and GSE111974". The differentially expressed genes (DEGs) evaluation, enrichment analysis, as well as efficient weighted gene co-expression network analysis (WGCNA), were employed for distinguishing RIF-linked hub genes, which were tested by RT-qPCR in our 30 independent samples. Next, we studied the topography of infiltration of 22 immune cell subpopulations and the association between hub genes and immune cells in RIF using the CIBERSORT algorithm. Finally, a novel ridge plot was utilized to exhibit the potential function of core genes. Results: The enrichment of GO/KEGG pathways reveals that Herpes simplex virus 1 infection and Salmonella infection may have an important role in RIF. After WGCNA, the intersected genes with the previous DEGs were obtained using both variance and association. Notably, the subsequent nine hub genes were finally selected: ACTL6A, BECN1, SNRPD1, POLR1B, GSK3B, PPP2CA, RBBP7, PLK4, and RFC4, based on the PPI network and three different algorithms, whose expression patterns were also verified by RT-qPCR. With in-depth analysis, we speculated that key genes mentioned above might be involved in the RIF through disturbing endometrial microflora homeostasis, impairing autophagy, and inhibiting the proliferation of endometrium. Furthermore, the current study revealed the aberrant immune infiltration patterns and emphasized that uterine NK cells (uNK) and CD4+ T cells were substantially altered in RIF endometrium. Finally, the ridge plot displayed a clear and crucial association between hub genes and other genes and key pathways. Conclusion: We first utilized WGCNA to identify the most potential nine hub genes which might be associated with RIF. Meanwhile, this study offers insights into the landscape of immune infiltration status to reveal the underlying immune pathogenesis of RIF. This may be a direction for the next study of RIF etiology. Further studies would be required to investigate the involved mechanisms.

8.
Pestic Biochem Physiol ; 200: 105831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582594

RESUMO

Paraquat (PQ) causes fatal poisoning that leads to systemic multiple organ fibrosis, and transforming growth factor (TGF)-ß1 plays a critical role in this process. In this study, we aimed to investigate the effects of AZ12601011 (a small molecular inhibitor of TGFßRI) on PQ-induced multiple organ fibrosis. We established a mouse model of PQ in vivo and used PQ-treated lung epithelial cell (A549) and renal tubular epithelial cells (TECs) in vitro. Haematoxylin-eosin and Masson staining revealed that AZ12601011 ameliorated pulmonary, hepatic, and renal fibrosis, consistent with the decrease in the levels of fibrotic indicators, alpha-smooth muscle actin (α-SMA) and collagen-1, in the lungs and kidneys of PQ-treated mice. In vitro data showed that AZ12601011 suppressed the induction of α-SMA and collagen-1 in PQ-treated A549 cells and TECs. In addition, AZ12601011 inhibited the release of inflammatory factors, interleukin (IL)-1ß, IL-6, and tumour necrosis factor-α. Mechanistically, TGF-ß and TGFßRI levels were significantly upregulated in the lungs and kidneys of PQ-treated mice. Cellular thermal shift assay and western blotting revealed that AZ12601011 directly bound with TGFßRI and blocked the activation of Smad3 downstream. In conclusion, our findings revealed that AZ12601011 attenuated PQ-induced multiple organ fibrosis by blocking the TGF-ß/Smad3 signalling pathway, suggesting its potential for PQ poisoning treatment.


Assuntos
Lesão Pulmonar Aguda , Paraquat , Fibrose Pulmonar , Camundongos , Animais , Paraquat/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Fator de Crescimento Transformador beta/toxicidade , Fator de Crescimento Transformador beta1/toxicidade , Fator de Crescimento Transformador beta1/metabolismo , Colágeno/toxicidade , Colágeno/metabolismo , Fatores de Crescimento Transformadores/toxicidade
9.
PLoS One ; 19(4): e0297787, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578812

RESUMO

Protecting human, animal, and plant life or health from additives, toxins, and contaminants in agri-products and promoting green free trade are the main components of Sanitary and Phytosanitary (SPS) measures. However, the SPS measures are heterogeneous. This study examines the impact of SPS measures on the measured export quality and discusses their influence on the environmental protection of the exporting country. International heterogeneous measures do not necessarily promote quality upgrading but greatly increase transaction costs. By contrast, China's agri-product' quality upgrading and environmental pollution are in sharp contrast. Based on a heterogeneous firm-trade model, this study obtains three hypothetical propositions and conducts empirical regressions using the Tobit method. This study finds that heterogeneous SPS measures hinder quality upgrading because firms present a different quality upgrading trend, which in turn impedes the environmental protection of the exporting country; the quality upgrading made by diversified SOEs is higher than that of foreign firms and private firms; the quality upgrading made by general firms is higher than that of processing firms; and protective SPS measures have a stronger negative effect on quality upgrading and environmental protection.


Assuntos
Conservação dos Recursos Naturais , Cooperação Internacional , Animais , Humanos , Comércio , Internacionalidade , Poluição Ambiental/prevenção & controle , China
10.
Virol Sin ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38548102

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still epidemic around the world. The manipulation of SARS-CoV-2 is restricted to biosafety level 3 laboratories (BSL-3). In this study, we developed a SARS-CoV-2 ΔN-GFP-HiBiT replicon delivery particles (RDPs) encoding a dual reporter gene, GFP-HiBiT, capable of producing both GFP signal and luciferase activities. Through optimal selection of the reporter gene, GFP-HiBiT demonstrated superior stability and convenience for antiviral evaluation. Additionally, we established a RDP infection mouse model by delivering the N gene into K18-hACE2 KI mouse through lentivirus. This mouse model supports RDP replication and can be utilized for in vivo antiviral evaluations. In summary, the RDP system serves as a valuable tool for efficient antiviral screening and studying the gene function of SARS-CoV-2. Importantly, this system can be manipulated in BSL-2 laboratories, decreasing the threshold of experimental requirements.

12.
Biotechnol J ; 19(3): e2300642, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472088

RESUMO

The biosynthesis of cadaverine from lysine is an environmentally promising technology, that could contribute to a more sustainable approach to manufacturing bio-nylon 5X. However, the titer of biosynthesized cadaverine has still not reached a sufficient level for industrial production. A powerful green cell factory was developed to enhance cadaverine production by regulating lipopolysaccharide (LPS) genes and improving membrane permeability. Firstly, 10 LPS mutant strains were constructed and the effect on the growth was investigated. Then, the lysine decarboxylase (CadA) was overexpressed in 10 LPS mutant strains of Escherichia coli MG1655 and the ability to produce cadaverine was compared. Using 20.0 g L-1 of L-lysine hydrochloride (L-lysine-HCl) as the substrate for the biotransformation reaction, Cad02 and Cad06 strains exhibited high production levels of cadaverine, with 8.95 g L-1 and 7.55 g L-1 respectively while the control strain Cad00 only 4.92 g L-1 . Directed evolution of CadA was also used to improve its stability under alkaline conditions. The cadaverine production of the Cad02-M mutant stain increased by 1.86 times at pH 8.0. Finally, the production process was scaled up using recombinant whole cells as catalysts, achieving a high titer of 211 g L-1 cadaverine (96.8%) by fed-batch bioconversion. This study demonstrates the potential role of LPS in enhancing the efficiency of mass transfer between substrate and enzymes in vivo by increasing cell permeability. The results indicate that the argumentation of cell permeability could not only significantly enhance the biotransformation efficiency of cadaverine, but also provide a universally applicable, straightforward, environment-friendly, and cost-effective method for the biosynthesis of other high-value chemicals.


Assuntos
Escherichia coli , Lipopolissacarídeos , Escherichia coli/genética , Cadaverina/metabolismo , Lipopolissacarídeos/metabolismo , Catálise , Biotransformação , Lisina/metabolismo
13.
Cell Death Discov ; 10(1): 118, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453888

RESUMO

Colorectal cancer (CRC) is a malignancy that is widely prevalent worldwide. Due to its unsatisfactory treatment outcome and extremely poor prognosis, many studies on the molecular mechanisms and pathological mechanisms of CRC have been published in recent years. The tumor microenvironment (TME) is an extremely important feature of tumorigenesis and one of the hallmarks of tumor development. Metabolic reprogramming is currently a hot topic in tumor research, and studies on this topic have provided important insights into CRC development. In particular, metabolic reprogramming in cancer causes changes in the composition of energy and nutrients in the TME. Furthermore, it can alter the complex crosstalk between immune cells and associated immune factors, such as associated macrophages and T cells, which play important immune roles in the TME, in turn affecting the immune escape of tumors by altering immune surveillance. In this review, we summarize several metabolism-related processes affecting the immune microenvironment of CRC tumors. Our results showed that the immune microenvironment is regulated by metabolic reprogramming and influences the development of CRC.

14.
Curr Med Imaging ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38449070

RESUMO

BACKGROUND: Some patients with suspected brain metastases (BM) could not tolerate longer scanning examinations according to the standardized MRI protocol. OBJECTIVE: The purpose of this study was to evaluate the clinical value of contrast-enhanced fast fluid-attenuated inversion recovery (CE FLAIR) imaging in combination with contrast-enhanced T1 weighted imaging (CE T1WI) in detecting BM of lung cancer and explore a quick and effective MRI protocol. MATERIAL AND METHODS: In 201 patients with lung cancers and suspected BM, T1WI and FLAIR were performed before and after administration of gadopentetate dimeglumine. Two radiologists reviewed pre- and post-contrast images to determine the presence of abnormal contrast enhancement or signal intensity and decided whether it was metastatic or not on CE T1WI (Group 1) and CE FLAIR (Group 2). The number, locations and features of abnormal findings in two groups were recorded. Receiver Operating Characteristic (ROC) analyses were conducted in three groups: Group 1, 2 and 3(combination of CE FLAIR and CE T1WI). RESULTS: A total of 714 abnormal findings were revealed, of which 672 were considered as BM and 42 nonmetastatic. Superficial and small metastases(≤10mm) in parenchyma and ependyma, leptomeningeal and non-expansive skull metastases were typically better seen on CE FLAIR. The areas under ROC in the three groups were 0.720,0.887 and 0.973, respectively. Group 3 was significantly better in diagnostic efficiency of BMs than Group 1 (p<0.0001) or Group 2 (p=0.0006). CONCLUSION: The combination of CE T1WI and CE FLAIR promotes diagnostic performance and results in better observation and characterization of BM in patients with lung cancers. It provides a quick and efficient way of detecting BM.

15.
Cell Death Discov ; 10(1): 123, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461207

RESUMO

Solute carrier family 26 member 9 (SLC26A9) is a member of the Slc26a family of multifunctional anion transporters that functions as a Cl- channel in parietal cells during acid secretion. We explored the role of SLC26A9 in colorectal cancer (CRC) and its related mechanisms through clinical samples from CRC patients, CRC cell lines and mouse models. We observed that SLC26A9 was expressed at low levels in the cytoplasm of adjacent tissues, polyps and adenomas but was significantly increased in colorectal adenocarcinoma. Moreover, increased levels of SLC26A9 were associated with a high risk of disease and poor prognosis. In addition, downregulation of SLC26A9 in CRC cells induced cell cycle arrest and apoptosis but inhibited cell proliferation and xenograft tumor growth both in vitro and in vivo. Mechanistic analysis revealed that SLC26A9 was colocalized with ß-catenin in the nucleus of CRC cells. The translocation of these two proteins from the cytoplasm to the nucleus reflected the activation of Wnt/ß-catenin signaling, and promoted the transcription of downstream target proteins, including CyclinD1, c-Myc and Snail, but inhibited the expression of cytochrome C (Cyt-c), cleaved Caspase9, cleaved Caspase3 and apoptosis-inducing factor (AIF). CRC is accompanied by alteration of epithelial mesenchymal transition (EMT) markers. Meanwhile, further studies showed that in SW48 cells, overexpressing SLC26A9 was cocultured with the ß-catenin inhibitor XAV-939, ß-catenin was downregulated, and EMT was reversed. Our study demonstrated SLC26A9 may be responsible for alterations in the proliferative ability and aggressive potential of CRC by regulating the Wnt/ß-catenin signaling pathway.

16.
J Hazard Mater ; 469: 133916, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479137

RESUMO

Aflatoxins from the fungus Aspergillus flavus (A. flavus) that contaminate stored peanuts is a major hazard to human health worldwide. Reducing A. flavus in soil can decrease the risk of aflatoxins in stored peanuts. In this experiment, we determined whether peanuts grown on soil fumigated with dazomet (DZ), metham sodium (MS), allyl isothiocyanate (AITC), chloropicrin (PIC) or dimethyl disulfide (DMDS) would reduce of the quantity of A. flavus and its toxin's presence. The results of bioassays and field tests showed that PIC was the most effective fumigant for preventing and controlling A. flavus, followed by MS. PIC and MS applied to the soil for 14 d resulted in LD50 values against A. flavus of 3.558 and 4.893 mg kg-1, respectively, leading to almost 100% and 98.82% effectiveness of A. flavus, respectively. Peanuts harvested from fumigated soil and then stored for 60 d resulted in undetectable levels of aflatoxin B1 (AFB1) compared to unfumigated soil that contained 0.64 ug kg-1 of AFB1, which suggested that soil fumigation can reduce the probability of aflatoxin contamination during peanut storage and showed the potential to increase the safety of peanuts consumed by humans. Further research is planned to determine the practical value of our research in commercial practice.


Assuntos
Aflatoxina B1 , Aflatoxinas , Humanos , Aflatoxina B1/toxicidade , Aflatoxina B1/análise , Arachis , Solo , Desinfecção , Aspergillus flavus , Aflatoxinas/toxicidade , Aflatoxinas/análise
17.
Nat Commun ; 15(1): 1863, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424083

RESUMO

Simultaneous improvement of strength and conductivity is urgently demanded but challenging for bimetallic materials. Here we show by creating a self-assembled lamellar (SAL) architecture in W-Cu system, enhancement in strength and electrical conductivity is able to be achieved at the same time. The SAL architecture features alternately stacked Cu layers and W lamellae containing high-density dislocations. This unique layout not only enables predominant stress partitioning in the W phase, but also promotes hetero-deformation induced strengthening. In addition, the SAL architecture possesses strong crack-buffering effect and damage tolerance. Meanwhile, it provides continuous conducting channels for electrons and reduces interface scattering. As a result, a yield strength that doubles the value of the counterpart, an increased electrical conductivity, and a large plasticity were achieved simultaneously in the SAL W-Cu composite. This study proposes a flexible strategy of architecture design and an effective method for manufacturing bimetallic composites with excellent integrated properties.

18.
Math Biosci Eng ; 21(1): 1394-1412, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303470

RESUMO

In response to the limited capability of extracting semantic information in knowledge graph completion methods, we propose a model that combines spatial transformation and attention mechanisms (STAM) for knowledge graph embedding. Firstly, spatial transformation is applied to reorganize entity embeddings and relation embeddings, enabling increased interaction between entities and relations while preserving shallow information. Next, a two-dimensional convolutional neural network is utilized to extract complex latent information among entity relations. Simultaneously, a multi-scale channel attention mechanism is constructed to enhance the capture of local detailed features and global semantic features. Finally, the surface-level shallow information and latent information are fused to obtain feature embeddings with richer semantic expression. The link prediction results on the public datasets WN18RR, FB15K237 and Kinship demonstrate that STAM achieved improvements of 8.8%, 10.5% and 6.9% in the mean reciprocal rank (MRR) evaluation metric compared to ConvE, for the respective datasets. Furthermore, in the link prediction experiments on the hydraulic engineering dataset, STAM achieves better experimental results in terms of MRR, Hits@1, Hits@3 and Hits@10 evaluation metrics, demonstrating the effectiveness of the model in the task of hydraulic engineering knowledge graph completion.

19.
Pest Manag Sci ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38380840

RESUMO

BACKGROUND: Canopy density is high during mid-to-late soybean growth as a result of dense planting to improve yield, which seriously affects the control of pests and diseases. The dilemmas of difficult droplet penetration, nonuniform deposition, and droplet drift in field spraying remain challenges to the precise control of droplet distribution. This paper proposed a novel spraying application mode combined flexible shield canopy opener (FSCO) with rotor wind. The design of the key components of the new boom-spraying machine are described. The effects of the comparative spraying modes on spray deposition and droplet drift were studied in a field validation test to explore the feasibility of the novel spraying application. RESULTS: The study found that droplet coverage inside the soybean canopy was significantly affected by spraying mode, rotor wind speed and opener depth. The spraying operation that used the FSCO and rotor wind integrated mode was optimal for droplet uniformity on the adaxial and abaxial surfaces of the canopy leaves, with droplet uniformity indices of 0.966 and 0.934, respectively. At a rotor wind speed of 6 m s-1 and opener depth of 15 cm, the soybean canopy droplet coverage uniformity effect achieved the highest composite score of 0.937. The spraying mode used in this study improved droplet coverage uniformity by 82.30% and droplet anti-drift performance improved by 99.73% compared to the conventional boom-spraying mode. CONCLUSION: The study shows validity of the spraying mode combined FSCO with rotor wind to open dense canopy and improved droplet deposition uniformity in canopy and anti-drift performance. © 2024 Society of Chemical Industry.

20.
J Inflamm Res ; 17: 947-955, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370467

RESUMO

Rheumatic disease is a disease which is not yet fully clarified to etiology and also involved in a local pathological injury or systemic disease. With the continuous improvement of clinical medical research in recent years, the development process of rheumatic diseases has been gradually elucidated; with the intensely study of epigenetics, it is realized that environmental changes can affect genetics, among which histone acetylation is one of the essential mechanisms in epigenetics. Histone deacetylases (HDACs) play an important role in regulating gene expression in various biological processes, including differentiation, development, stress response, and injury. HDACs are involved in a variety of physiological processes and are promising drug targets in various pathological conditions, such as cancer, cardiac and neurodegenerative diseases, inflammation, metabolic and immune disorders, and viral and parasitic infections. In this paper, we reviewed the roles of HDACs in rheumatic diseases in terms of their classification and function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...